SISTEMA SDCTIE GRACELI EM:


X

TODA FORMA DE FUNÇÃO E EQUAÇÃO EM:


Um gás de Bose ideal é uma versão quântica de um gás ideal clássico. Ele é composto de bósons, partículas que têm um valor inteiro de spin, e portanto obedecem a estatística de Bose-Einstein. A mecânica estatística de bósons foi desenvolvida por Satyendra Nath Bose para fótons, e estendida posteriormente por Albert Einstein para partículas massivas. Einstein percebeu que um gás ideal de bósons iria se condensar quando a temperatura fosse baixa o suficiente, o que não ocorre com um gás ideal clássico. Esta fase da matéria ficou conhecida como Condensado de Bose-Einstein.

Potencial termodinâmico

Devido a Interação de troca, a maneira mais simples de trabalhar com gases quânticos é com o ensemble grande canônico:

que para um gás fica:

A segunda soma é restrita ao número total de partículas ser . Uma maneira de fazer tal soma é somar primeiro sobre todos os  possíveis e depois multiplicar todos os níveis. Para um sistema de bósons, qualquer valor de  é permitido, logo:

O potencial termodinâmico é então:

Se o gás possuir apenas graus de liberdade translacionais em  dimensões (os demais casos podem ser tratados de forma análoga):

onde  é a função gama é a função polilogarítmica e  é o volume d-dimensional que o gás ocupa.

Note que a função polilogarítmica só está definida para  reais menores ou iguais a 1. O segundo termo que já estava presente na expressão anterior é a contribuição de momento zero, ou seja, do estado de menor energia.

Condensação de Bose-Einstein

O gás de bósons é o sistema mais simples que apresenta o fenômeno de condensação de Bose-Einstein. Para ver esse efeito, escrevemos o número médio de partículas:

O maior valor da função polilogarítmica acontece em  quando o número de partículas em estados excitados é:

Perceba que para  isso é um número finito que é atingido numa certa temperatura . Todas as demais

partículas deverão estar no estado fundamental, não importando quantas sejam (contanto que a aproximação de gás continue valendo).




Condensado de Bose-Einstein

Origem: Wikipédia, a enciclopédia livre.

condensado de Bose-Einstein é uma fase da matéria formada por bósons a uma temperatura muito próxima do zero absoluto. Nestas condições, uma grande fracção de átomos atinge o mais baixo estado quântico, e nestas condições os efeitos quânticos podem ser observados à escala macroscópica. A existência deste estado da matéria como consequência da mecânica quântica foi inicialmente prevista por Albert Einstein em 1925, no seguimento do trabalho efetuado por Satyendra Nath Bose. O primeiro condensado deste tipo foi produzido setenta anos mais tarde por Eric Cornell e Carl Wieman em 1995, na Universidade do Colorado em Boulder, usando um gás de átomos de rubídio arrefecido a 170 nK (nano Kelvin).[1]

Dados de distribuição de velocidade confirmando a descoberta de um novo estado da matéria, o Condensado de Bose-Einstein, a partir de um gás de Rubídio

Descrição detalhada do gráfico de distribuição de velocidades

As cores artificiais representam o número de átomos em cada velocidade, indicando o vermelho menos átomos e o branco mais átomos. As áreas em que aparecem branco e azul claro são velocidades menores. Esquerda: Logo antes do aparecimento do condensado de Bose-Einstein. Centro: No instante do aparecimento do condensado. Direita: após a rápida evaporação, deixando amostras puras do condensado. O pico não é infinitamente estreito devido ao Princípio da Incerteza de Heisenberg: quando um átomo é retido numa região específica do espaço a sua distribuição de velocidade possui necessariamente uma certa largura mínima.

Introdução

Os condensados de Bose-Einstein são fluidos de temperaturas baixas com propriedades não totalmente compreendidas, como fluir espontaneamente para fora do seu recipiente. Este efeito é uma consequência da mecânica quântica, que postula que qualquer sistema só pode adquirir energia em quantidades discretas. Se um sistema está a uma temperatura tão baixa que esteja no seu estado de energia mínima, não é possível reduzir a sua energia, nem sequer por fricção. Assim sendo, sem fricção, o fluido facilmente supera a gravidade devido às forças de adesão entre o fluido e a parede do seu recipiente e tomará a posição mais favorável, ou seja, a toda a volta do recipiente.

Teoria

O abrandamento de átomos por meio de arrefecimento produz um estado quântico único conhecido como condensado de Bose ou condensado de Bose-Einstein. Este fenômeno foi teorizado nos anos 20 por Albert Einstein, ao generalizar o trabalho de Satyendra Nath Bose sobre a mecânica estatística dos Fótons (sem massa) para átomos (com massa). (O manuscrito de Einstein, que se pensava estar perdido, foi encontrado em 2005 numa biblioteca da Universidade de Leiden). O resultado do trabalho de Bose e Einstein é o conceito de gás de Bose, governado pela estatística de Bose-Einstein que descreve a distribuição estatística de partículas idênticas de spin inteiro, conhecidas hoje em dia como Bósons. As partículas bosónicas, que incluem o Fóton e átomos como o He-4, podem partilhar estados quânticos umas com as outras. Einstein especulou que arrefecendo os átomos bosónicos até temperaturas muito baixas os faria colapsar (ou "condensar") para o mais baixo estado quântico acessível, resultando numa nova forma de matéria.

Esta transição ocorre abaixo de uma temperatura crítica, a qual, para um gás tridimensional uniforme consistindo em partículas não-interactivas e sem graus internos de liberdade aparentes, é dada por:

onde:

 é a temperatura crítica,
a densidade da partícula,
a massa por bóson,
constante de Planck,
constante de Boltzmann, e
função zeta de Riemann ≈ 2,6124.






Um gás de férmionsgás de Fermi ou gás de elétrons livres é um conjunto de férmions não interativos. É a versão na Mecânica Quântica de um gás ideal, para o caso de partículas fermiônicas. Elétrons em metais e semicondutores e nêutrons em estrelas de nêutrons podem aproximadamente ser considerados gases de Fermi.

A distribuição de energia dos férmions em um gás de Fermi em equilíbrio térmico é determinada por sua densidade, pela temperatura e pelos estados de energia disponíveis, via a estatística de Fermi-Dirac. Pelo princípio de exclusão de Pauli, nenhum estado quântico pode ser ocupado por mais que um férmion, então a energia total do gás de Fermi à temperatura do zero absoluto é tão grande quanto o produto do número de partículas pelo estado de energia de cada partícula. Por esta razão, a pressão de um gás Fermi é diferente de zero na temperatura de zero absoluto, em contraste com um gás ideal clássico. Esta então chamada pressão de degenerescência estabiliza uma estrela de nêutrons (um gás de Fermi de nêutrons) ou uma estrela anã branca (um gás de Fermi de elétrons) contra a tração interna da gravidade.

É possível definir uma temperatura de Fermi abaixo do qual o gás pode ser considerado degenerado. Esta temperatura depende da massa dos férmions e da energia da densidade dos estados. Para metais, a temperatura do gás de elétrons de Fermi é geralmente de muitos milhares de kelvins, quando então eles podem ser considerados degenerados. A máxima energia dos férmions a temperatura do zero absoluto é chamada energia de Fermi. A superfície da energia de Fermi no momento espacial é chamada superfície de Fermi.

Desde que as interações são negligenciadas por definição, o problema de tratar propriedades do equilíbrio e o comportamento dinâmico de um gás de Fermi se reduz ao estudo do comportamento de partículas independentes e isoladas. Como está, é ainda relativamente tratável e dá forma ao ponto de servir de base para teorias mais avançadas (tais como a teoria do líquido de Fermi ou a teoria perturbacional) as quais levam em conta as interações com algum grau de exatidão.

Descrição matemática

Dentro da estrutura que a física estatística possibilita, segue-se que com a ajuda de conjuntos estatísticos para um número médio de ocupação  dos estados  com a energia  da estatística de Fermi-Dirac:

Onde  é o potencial químico a temperatura e  a constante de Boltzmann.

Estes férmions, que estão sujeitos ao princípio de exclusão de Pauli, podem estar na condição de máxima ocupação, ou seja . Esta condição é que a estatística de Fermi-Dirac tratará para qualquer valor de preenchimento pleno , porque o potencial químico de um gás ideal de Fermi não é sujeito a quaisquer restrições.

Gás de Fermi como modelo para os núcleos dos átomos

O primeiro pesquisador a apontar uma explicação simples para o movimento independente de núcleons através do núcleo atômico em seus estado fundamental foi Weisskopf.[1] Tal explicação usa como base o modelo de gás de Fermi. O modelo utilizado é essencialmente o mesmo utilizado para tratar de elétrons livres em um metal condutor. É suposto que cada núcleon do núcleo atômico mova-se num potencial efetivo atrativo que representa um efeito médio de suas interações com os outros núcleons naquele núcleo. Há um valor constante dentro do núcleo para este potencial e externamente ao núcleo ele decresce até zero a uma distância igual ao alcance das forças nucleares e é aproximadamente igual a um poço quadrado infinito e tridimensional, de raio ligeiramente superior ao raio do núcleo.[2] O núcleo atômico contém dois tipos de partículas, os prótons e os neutrons e ambos têm um momento angular intrínseco, ambos são classificados como férmions de spin 1/2, mas sendo duas partículas distinguíveis o princípio de exclusão de Pauli age independentemente sobre cada um deles. Assim podemos considerar que o núcleo é constituído por dois gases de Fermi, o dos prótons e o dos nêutrons e que corresponderão a dois estado energéticos diferentes e cada estado só pode ser ocupado por apenas dois prótons ou dois nêutrons, com spins de sinais opostos.[3][4][5]

Referências




Um gás ideal ou gás perfeito pode ser compreendido como um conjunto de moléculas ou átomos que estão em movimento constante e aleatório, cujas velocidades médias estão relacionadas com a temperatura - quanto maior a temperatura do sistema, maior a velocidade média das moléculas. Um gás difere-se de um líquido pelo fato de as moléculas estarem mais afastadas, exceto no momento em que elas sofrem colisões. Outra diferença é que o movimento de suas trajetórias é muito pouco perturbado pelas forças intermoleculares.[1] O conceito de gás ideal é útil porque obedece a lei dos gases ideais, uma equação de estado simplificada, e é passível de análise pela mecânica estatística.[2] A Lei dos Gases Ideais relaciona as variáveis de estado: temperaturapressãovolume e número de mols, o que permite determinar o valor de uma variável quando se conhece as outras três. Um gás ideal é composto de partículas puntiformes (tamanho desprezível, considerando que seus diâmetros são muito menores que as distâncias médias percorridas), e precisa estar na condição de baixa pressão (falta de interações). Considerando os três estados físicos da matéria, apenas o estado gasoso permite, comparativamente, uma descrição quantitativa simples.[3]

Em condições ambientais normais tais como as temperatura e pressão padrão, a maioria dos gases reais comportam-se como um gás ideal.[2] Geralmente, desvios de um gás ideal tendem a diminuir com mais alta temperatura e menor densidade, como o trabalho realizado por forças intermoleculares tornando-se menos significativas comparadas com a energia cinética das partículas, e o tamanho das moléculas torna-se menos significativo comparado ao espaço vazio entre elas.[2]

O modelo do gás ideal tende a falhar em mais baixas temperaturas ou mais altas pressões, quando forças intermoleculares e o tamanho molecular tornam-se importantes. Em algum ponto de baixa temperatura e alta pressão, gases reais atravessam uma transição de fase, tais como um líquido ou um sólido. O modelo de um gás ideal, entretanto, não descreve ou permite transições de fases. Estes devem ser modelados por equações de estado mais complexas.

O modelo do gás ideal tem sido explorado tanto na dinâmica Newtoniana (como na "teoria cinética") e em mecânica quântica (como um "gás em uma caixa"). O modelo de gás ideal tem sido também usado para modelar o comportamento de elétrons em um metal (no modelo de Drude e no modelo do elétron livre), e é um dos mais importantes modelos em mecânica estatística.

Tipos de gases ideais

Existem três classes básicas de gases ideais:

O gás ideal clássico pode ser separado em dois tipos: O gás ideal termodinâmico clássico e o gás ideal quântico de Boltzmann. Ambos são essencialmente o mesmo, exceto que o gás ideal termodinâmico é baseado na mecânica estatística clássica , e certos parâmetros tais como a entropia são somente especificados dentro de uma constante aditiva indeterminada. O gás ideal quântico de Boltzmann supera esta limitação, tomando o limite do gás quântico de Bose e o gás quântico de Fermi no limite de alta temperatura para especificar estas constantes aditivas. O comportamento de um gás quântico de Boltzmann é o mesmo que de um gás ideal clássico, exceto para a especificação destas constantes. Os resultados do gás quântico de Boltzmann são utilizados num certo número de casos, incluindo a equação de Sackur-Tetrode para a entropia de um gás ideal e a equação de ionização Saha para um plasma fracamente ionizado.

Gás ideal simples

Um gás ideal simples pode ser completamente caracterizado apenas pelos seguinte parâmetros macroscópicos: energia interna, volume e número de moles de seus constituintes.


Um gás ideal simples é caracterizado por duas equações:

Onde:

  •  é uma constante;
  •  é a constante universal dos gases ();
  •  é a energia interna do sistema;
  •  é o número de moles dos componestes químicos;
  •  é a temperatura do sistema.

Gases compostos de átomos monoatômicos não interagentes (tais como He, Ar, Ne) satisfazem essas equações em temperaturas tais que  seja pequeno quando comparado com as energias de excitação eletrônica e em pressões baixas ou moderadas. Para tais gases ideais monoatômicos .

Leis que regem os gases ideais termodinâmicos clássicos

Um gás ideal termodinâmico clássico obedece às seguintes leis:

LeiPub.CondiçõesEnunciado
Lei de Boyle-Mariotte1662
Lei de Charles1802
Lei de Gay-Lussac1809
Lei de Avogadro1811Substância pura

Onde:

 representa a pressão;
 representa o volume;
 representa a temperatura termodinâmica;
 representa a quantidade de gás;
 representa a massa.

Equação de Clapeyron

Unificando todos os enunciados obtemos que:

Essa relação define a constante dos gases perfeitos () que vale 8,314 J·K−1mol−1 para todos os gases perfeitos. Daí vem a equação de estado dos gases perfeitos, conhecida como equação de Clapeyron:

O nome dessa formulação é uma referência a Benoît Paul-Émile Clapeyron.

Relação com a realidade

Ver artigo principal: Gás real

Um gás real tende a se comportar como ideal quando o fator de compressibilidade () tende a um, ou seja, quando a pressão é baixa e a temperatura é alta, para que a distância entre as moléculas seja a maior possível. Nessas condições, os choques entre as moléculas se tornam praticamente elásticos, havendo pouca perda de energia cinética.

Podemos perceber que a equação não faz nenhuma referência ao tipo de molécula de gás. A consequência desse fato é a que a equação é incapaz de prever os efeitos das interações intermoleculares. Porque se duas moléculas com grande interação intermolecular se cruzam próximas uma da outra existe uma força de atração, diminuindo a energia cinética, o que diminuiria a pressão total do sistema em relação ao esperado no caso de não haver tal interação. Por isso é preciso que o sistema esteja em alta temperatura e baixa pressão.

No primeiro caso, com a temperatura alta, a alta energia cinética faz com que os choques entre as moléculas sejam quase elásticos, e quando elas se aproximam a interação seja por um momento curto e a interação acaba não sendo o suficiente para mudar a trajetória das partículas no gás. É como se fosse um foguete passando próximo da superfície de um planeta. Se a velocidade for baixa ele será aprisionado pelo enorme campo gravitacional, mudando de trajetória e se chocando com o planeta, o que diminuiria sua energia cinética. Se a velocidade for suficientemente alta ele passará sem grandes mudanças.

No segundo caso, com a baixa pressão, as moléculas estão muito afastadas. E como a interação depende fortemente da distância das partículas, grandes distâncias fazem com que o efeito de interação seja praticamente desprezível.




Os gases reais são todos os gases existentes na natureza, salvo quando estão em condições de pressão e de temperatura particulares e nestes casos são considerados aproximadamente, para efeitos apenas de cálculos facilitados, como gases perfeitos ou ideais. Em oposição aos gases ideais, os gases reais não podem ser explicados e modelados inteiramente usando-se a lei dos gases ideais.

Os gases nobres, como hélio e o argônio, por serem gases atômicos, não formando normalmente moléculas, são mais próximos dos gases ideais, e por isso, até erroneamente, chamados no passado de "gases perfeitos", pois suas partículas se comportam mais como as características idealizadas e pontuais dos gases ideais.[1]

Para entender-se e modelar-se gases reais diversas condições devem ser consideradas, como:

Para a maioria das aplicações, tal análise detalhada é desnecessária, e a aproximação dos gases ideais por ser usada com razoável precisão. Modelos de gases reais tem de ser usados próximos dos pontos de condensação dos gases, próximo do ponto crítico, a altíssimas pressões, e em alguns outros casos menos usuais.

Para tratar-se fisicamente os gases reais, diversas equações de estado adequadas aos gases reais foram propostas:

Introduz-se também o coeficiente de compressibilidade Z para medir a não idealidade dos gases reais.

Modelos

Ver artigo principal: Equação de estado

Modelo de van der Waals

Ver artigo principal: Equação de van der Waals

Gases reais são frequentemente modelados por levar-se em conta seus peso molar e volume molar:

.

Nesta equação P é a pressão, T é a temperatura, R a constante dos gases ideais, e Vm o volume molar. a e b são parâmetros que são determinados empiricamente para cada gás, mas são algumas vezes estimados de sua temperatura crítica (Tc) e pressão crítica (Pc) usando-se estas relações:

Modelo de Redlich–Kwong

equação de Redlich–Kwong é outra equação de dois parâmetros que é usada para modelar gases reais. É quase sempre mais precisa que a equação de van der Waals, e frequentemente mais precisa que alguma equação com mais que dois parâmetros. A equação é

.

Nesta equação a e b são dois parâmetros empíricos que não são os mesmos parâmetros usados na equação de van der Waals.

Modelo de Berthelot e modelo modificado de Berthelot

A equação de Berthelot é muito raramente usada, , mas a versão modificada é algo mais precisa: 

Modelo de Dieterici

Este modelo tem deixado de ser usado nos últimos anos

Modelo de Clausius

A equação de Clausius é uma equação de três parâmetros muito simples usada para modelar gases:

.

Nesta equação,  e .

Modelo virial

Ver artigo principal: Equação do virial

A equação virial deriva de um tratamento perturbativo de mecânica estatística:

ou alternativamente

.

A, B, C, A′, B′, e C′ são constantes dependentes da temperatura.

Modelo Peng-Robinson

Esta equação de dois parâmetros tem a interessante característica de ser útil em modelar alguns líquidos assim como gases reais:

.

Modelo de Wohl

A equação de Wohl é formulada em termos de valores críticos, fazendo-a útil quando constantes de gases reais não estão disponíveis:

Nesta equação  e .

Modelo de Beattie-Bridgeman

A equação de Beattie-Bridgeman é expressa por:

.

Nesta equação d é a densidade molar e abcA, e B são parâmetros empíricos.

Modelo de Benedict-Webb-Rubin

A equação de Benedict-Webb-Rubin, chamada também chamada equação BWR e algumas vezes referida como equação BWRS:

 Onde d é a densidade molar e abcABCα, e γ são parâmetros empíricos.





Um bilhar dinâmico é um sistema dinâmico no qual uma partícula alterna entre movimentos rectilínios e reflexões especulares num contorno ou fronteira.[1] Quando a partícula impacta contra o contorno se reflexa na perdida de sua velocidade. Os sistemas de bilhares dinâmicos são idealizações dos jogos de bilhar, mas onde a região contida pelo contorno pode ter formas distintas da retangular e ainda que possua numerosas dimensões.

Os bilhares dinâmicos podem também ser estudados em geometria não euclidiana; no efeito os primeiros estudos dos bilhares estabeleceram seu movimento ergódico sobre as superfícies de curvatura negativa constante. O estudo dos bilhares que se unem por fora de uma região, no lugar de estar contidos dentro de uma região, é conhecido como a teoria de bilhares exteriores. O movimento da partícula no bilhar é uma linha reta, com energia constante, entre reflexições na fronteira (uma geodésica para toda curvatura da superfície).

Todas as reflexições são especulares: o ângulo de incidencia justo antes do impacto é igual ao ângulo de reflexão justo depois do choque. A sucessão de reflexições se denomina o mapa do bilhar e caracreriza completamente o movimento da partícula. Os bilhares capturam toda a complexidade dos sistemas hamiltonianos, desde integrabilidade ao movimento caótico, sem as dificuldades de integrar as equações de movimento para determinar seu mapa de Poincaré.

Birkhoff demonstrou que um sistema de bilhar com uma superfície elíptica é integrável. Os bilhares unidimensionais (ou seja "hard rods") possuem um caos determinístico e são ergódicos se tem diferentes massas. Os problemas matemáticos dos bilhares unidimensionais com distintas massas e o de um único bilhar com uma caixa de contorno plano são equivalentes. A propriedade caótica significa que os bilhares são mostradores extremadamente eficientes de seu espaço de fase.

hamiltoniano de uma partícula de massa "m" que se descoloca em forma livre sem fricção sobre uma superfície é:

onde  é um potencial que vale zero dentro da região  onde se move a partícula, é infinito em todos os outros locais:

Este tipo de potencial garante uma reflexão especular na borda. O término cinético garante que a partícula se mova em linha reta, sem nenhuma troca em sua energia. Se a partícula se desloca em uma variedade(superfície), então o hamiltoniano é representado por:

onde  é o tensor métrico em um ponto . Devido a estrutura muito simples deste hamiltoniano, as equações de movimento da partícula, as Equações de Hamilton-Jacobi, não são mais que as equações geodésicas na variedade: a partícula se desloca ao largo de geodésicas.




equação de Van der Waals é uma equação de estado de um fluido composto de partículas com um tamanho não desprezável e com forças intermoleculares, como as forças de Van der Waals. A equação, cuja origem remonta a 1873, deve seu nome à Johannes Diderik van der Waals, que recebeu o Prêmio Nobel de Física em 1910 por seu trabalho na equação de estado dos gases e líquidos. Essa equação está baseada na modificação da lei dos gases ideais para que se aproxime da maneira mais precisa do comportamento dos gases reais, tendo em conta seu tamanho diferente de zero e a atração entre suas partículas.

A energia das moléculas

 funciona perfeitamente com pressões abaixo de 1 atm e temperaturas muito acima das temperaturas de condensação de um gás (esse é o conceito de gás ideal), uma vez que a pressão baixa (menos partículas por m³) reduz a probabilidade de colisões entre as moléculas e a alta temperatura aumenta a velocidade das moléculas, ou seja, diminui as interações intermoleculares, de modo que uma molécula com alta velocidade e, consequentemente, elevada energia cinética, passe do lado de uma outra molécula sem sofrer desvios consideráveis ou atrações maiores.

Se a molécula apresentasse baixa velocidade, ela seria atraída pela outra molécula e o gás , dependendo das pressões e da energia das moléculas, poderia liquefazer-se. Tal qual um foguete que ao passar perto de um planeta, com baixa velocidade, é atraído pelo campo gravitacional do mesmo, sofrendo um desvio em sua órbita.

Se a molécula for bem rápida, ela consegue escapar da força de atração das outra moléculas proporcionalmente à quantidade de energia que ela detém.

Fator de compressibilidade

Fator de compressibilidade em função da pressão

Há uma grandeza chamada fator de compressibilidade (z) que podemos expressar por: .

Para os gases ideais, z deve ser igual a 1 sob qualquer condição de temperatura, volume e/ou pressão. Porém foi observado experimentalmente que z desvia-se consideravelmente de 1 sob pressões mais altas e temperaturas mais baixas, como é mostrado no gráfico.

A equação

Observando isto, Van der Waals formulou sua equação, em 1873, a partir de dados obtidos experimentalmente, ou seja, a equação de Van der Waals é uma equação de estado empírica, e pode ser representada por:

onde a e b são constantes empíricas e variam para cada tipo de gás.

A constante a está relacionada com as forças de atração intermoleculares e a constante b está relacionada com o volume molecular. A tabela abaixo nos traz os valores de a e b para alguns gases:

Constantes de van der Waals
Gása (litro2•atm/mol2)b (litro/mol)
H20,24440,02661
He0,034120,02370
N21,3900,03913
O21,3600,03183
CO1,4850,03985
NO1,3400,02789
CO23,5920,04267
H2O5,4640,03049

Analisando mais a fundo a equação, nota-se que se o volume for suficientemente grande para a pressão ser baixa, o termo  tornar-se-á muito pequeno, e a soma  será praticamente igual a P. Sendo assim, ainda com V muito grande, o termo  será praticamente igual a V. Portanto quando a pressão é baixa, essa equação pode ser aproximada para , ou seja, o comportamento do gás será semelhante ao de um gás ideal.


Comentários

Postagens mais visitadas deste blog

TOPOGEOMETRIA DINÂMICA ÓTICA.

TOPOGEOMETRIA GRACELI SIMÉTRICA, E OU NÃO.